А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Альвеолы – «обменный пункт», в них происходит обмен газами между лёгкими и кровью. Обмен этот должен происходить почти мгновенно, на ходу, – для этого и нужна большая площадь.
Столь же высоким требованиям должен удовлетворять другой участник обмена – кровь. Главная часть крови – эритроциты, красные кровяные тельца. Их количество в крови огромно – около 25 триллионов.
Цепочкой из эритроцитов человека можно трижды обмотать по экватору земной шар. Эритроциты буквально набиты зёрнами гемоглобина – белка, имеющего чрезвычайно сложное молекулярное строение. По самым
скромным предположениям, формула гемоглобина имеет вид – C712 H113 0 N214 O245 S2 Fe.
Кровь – жидкость, и естественно, что кислород в ней растворяется. Однако в сравнительно скромных количествах. В крови (а её у человека около 5 литров) растворяется лишь 0,0165 литра кислорода. За минуту кровь совершает примерно три оборота и, следовательно, может передать тканям только 0,05 литра кислорода. А человек даже во сне потребляет в минуту 0,3 литра, при тяжёлой же работе нужда в кислороде достигает 4–6 литров.
Где же выход? В свойствах гемоглобина. Гемоглобин обладает способностью вступать с кислородом в химическую реакцию. Образуется оксигемоглобин. В таком, связанном, виде кровь переносит основную часть кислорода. Легко соединяясь с кислородом, гемоглобин так же легко отдаёт его клеткам.
Взамен кислорода гемоглобин получает «отработанный» в клетках углекислый газ и выносит его к альвеолам. Здесь происходит новый обмен. Гемоглобин расстается с углекислым газом и приобретает кислород. Чтобы снова отдать его клеткам.
Ясно, что главная «деталь» внутреннего узла – обменный пункт, альвеолы. Внутри альвеол – воздух, богатый кислородом. Снаружи – кровь, в которой много углекислоты. Между ними тонкая стенка, перегородка. Через неё должен быть произведён обмен. Сложная задача. Стенка мешает. Убрать её? Но тогда кровь хлынет в лёгкие. Нет, стенка нужна. Но стенка особой конструкции. Непроницаемая для жидкостей и твердых частиц, она должна свободно пропускать газы.
Именно так и решил задачу великий конструктор – природа. Теперь уже подобные стенки (их называют обычно полупроницаемыми перегородками) начинают применяться и в технике. Но создателем их является природа – не будем забывать автора…
Итак, на обменный пункт прибыла тёмно-вишнёвая венозная кровь, несущая продукты окисления – углекислоту, пары воды. Она омывает тонкие стенки альвеол. Там, в альвеолах, воздух, богатый кислородом. Молекулы газов, летящие во всех направлениях, «прошивают» перегородку. Происходит постепенное (а в конечном счёте очень быстрое, ибо площадь альвеол огромна) выравнивание состава. Часть альвеолярного кислорода поступает в кровь; продукты сгорания проникают в альвеолы и при выдохе уходят в атмосферу.
С обменного пункта кровь следует дальше, к клеткам. Теперь она алого цвета. У неё и название другое, светлое – артериальная кровь. Сердце – бесперебойный насос – качает и качает её, чтобы самые отдалённые ткани получили кислород. Ведь кислород – это жизнь.
В конструкции человеческого двигателя есть ещё одно, очень интересное и важное устройство. Оно напоминает современные системы автоматического управления. Это устройство регулирует «внешнее» дыхание.
Допустим, меня что-то заинтересовало: футбольный матч или партия в шахматы. Я так увлёкся, что смотрю на поле (или на доску) «разинув рот». Хочется пить, но мне не до того. В азарте я забыл даже, что надо делать вдох и выдох – дышать.
Что произойдёт? Альвеолярный воздух после каждого обмена становится всё беднее кислородом и богаче углекислым газом. Наконец настанет момент, когда обмен прекратится. Артериальная кровь станет такой же тёмной, как венозная, такой же бедной кислородом. Она пойдёт к клеткам, но ей нечего будет им дать, она не сможет ничего получить взамен. Клетки задохнутся в продуктах сгорания, наступит смерть.
Хороший конструктор учитывает свойства машины. И природа «предусмотрела» специальное устройство – «дыхательный центр», – которое действует автоматически.
Всякий автомат срабатывает от какого-то внешнего воздействия. Это может быть тяжесть трёхкопеечной монеты (в автоматах с газированной водой), повышение или понижение температуры (в термостатах), фотохимическое действие света и т. п. Однако какой-то «толчок» должен быть. Именно его улавливает «принимающая» часть автомата и передает приказ исполнительному механизму.
Какой «толчок» выбрали бы вы в данном случае? Подозреваю, что самый простой – недостаток кислорода, уменьшение его концентрации в лёгких (или в альвеолах) до определенной величины. Такое устройство вполне можно представить. Скажем, в альвеолах есть чувствительный «датчик», который отзывается на изменение состава воздуха. Когда содержание кислорода в них упадет, допустим, до 12 процентов (обычно 15–16), «датчик» сработает, передаст сигнал в мозг, и оттуда поступит такой приказ, что вы мгновенно забудете о футболе и сделаете вдох или выдох.
Но тем временем организм будет испытывать кислородный голод. Как говорят физиологи, образуется кислородный «долг». Такой долг возникает у спортсменов при большой нагрузке. Например, при скоростном беге на короткие дистанции. В эти моменты человек способен израсходовать в минуту до 35 литров кислорода. Между тем даже у хорошо тренированного человека максимальная доставка кислорода составляет лишь 4–5, редко 6 литров в минуту.
Поэтому бег с такой скоростью может продолжаться лишь несколько секунд (для стометровки – 10–12 секунд). Этот небольшой промежуток мышцы работают в условиях недостатка кислорода, за счёт резервов. Человек быстро устаёт, ему сразу же необходим отдых, «восстановительный период», в течение которого организм погасит кислородную задолженность.
Но одно дело рекордный бег специально тренированного спортсмена, длящийся секунды, и совсем другое – обычная жизнь. Тут не может быть никаких «долгов», потребность в кислороде должна удовлетворяться полностью. Учитывая это, природа построила работу дыхательного центра на другом принципе. Автомат срабатывает не при недостатке кислорода, а при… избытке углекислоты!
Автомат действует очень хорошо и надежно. В этом легко убедиться, если попробовать не дышать. Минута, максимум полторы, и вы начнёте жадно хватать воздух. В лёгких еще достаточно кислорода, никакого «долга» нет. Но углекислота накопилась, и автомат сработал, предупреждая кислородный голод.
В обычных, земных, условиях дыхательный автомат работает безукоризненно. И не его вина, если человек, не довольствуясь поверхностью земли, лезет под воду или поднимается в верхние слои атмосферы. На эти случаи автомат не рассчитан, тут возможны всякие неожиданности. И когда об этом забывают…
ТРОЕ НА ВОЗДУШНОМ ШАРЕ
Утром 15 апреля 1875 года аэростат «Зенит» оторвался от земли и начал стремительный подъём. День был ясный, солнечный. Ветер почти не ощущался. Всё предвещало удачный полёт и благополучное возвращение.
Аэронавты не сомневались в успехе. Командир «Зенита» француз Тиссандье десятки раз поднимался на аэростатах различных конструкций. Немалый опыт имели и члены экипажа итальянцы Кроссе-Спинелли и Сивель.
«Зенит» был снабжён всем необходимым. Продовольствие и вода на несколько дней, тёплая одежда, резиновая лодка. Аэронавты захватили с собой даже запас кислорода в подушках. Большая подъёмная сила и солидный балласт позволяли надеяться, что «Зенит» сможет подняться на небывалую высоту.
Запас кислорода в подушках был невелик. Но аэронавтов это не беспокоило. Они решили экономить кислород, воспользоваться им, только когда почувствуют удушье. К тому же при малейшей опасности они откроют клапан, стравят избыток водорода и начнут немедленный спуск.
О том, что произошло дальше, почти ничего не известно. На высоте около 7 километров Тиссандье посоветовался со спутниками, сбросить ли балласт, чтобы продолжать подъём. Сивель и Кроссе-Спинелли радостно согласились. Тиссандье сбросил несколько мешков с песком, и аэростат прыгнул вверх. Самочувствие у всех было отличное, настроение чудесное. «Мне никогда не было так хорошо, – рассказывал потом Тиссандье. – Я ощущал, что погружаюсь в сон: лёгкий, приятный, без сновидений». В последний момент он успел открыть клапан.
Очнулся Тиссандье через час. В голове шумело. Внутри было пусто, словно из него выпустили воздух. Он попробовал двигаться. Тело сделалось ватным, он с трудом поднял руку. Аэростат плыл на высоте 6 тысяч метров.
С огромным трудом Тиссандье добрался до своих спутников. Они были без сознания. Постарался привести их в чувство. Не удалось. Безжизненно белые лица и странные улыбки, будто они притворяются, шутят, а в глубине души смеются над ним. Тиссандье был храбрым человеком, но эта застывшая радость привела его в ужас. Усилием воли он заставил себя дотянуться до каната, открыл клапан. Аэростат медленно заскользил вниз…
Ни надувная лодка, ни запас провианта не понадобились. Аэростат опустился в густо населённом районе. К месту приземления немедленно прибыли врачи. Энергичные меры дали возможность спасти Тиссандье. Кроссе-Спинелли и Сивель погибли, так и не придя в сознание. При осмотре в кабине аэростата были найдены подушки, полные кислорода, аэронавты ими не воспользовались.
Эта трагическая история взволновала современников. Как объяснить гибель аэронавтов? Почему они – люди храбрые и опытные – не воспользовались кислородом? Что это за странное чувство радости, о котором рассказывает Тиссандье?..
Сейчас, когда высотные полеты стали обычными, нам понятна трагическая история «Зенита». Аэронавты были уверены, что почувствуют недостаток кислорода и успеют «включить» подушки. В этом была их главная ошибка. Ошибка, за которую двое из членов экипажа заплатили жизнью.
Исследования последних лет показали, что уже на высоте 1,5–2 километров человек хуже видит и хуже думает. Предметы кажутся ему плоскими – нарушается так называемое глубинное зрение. Особенно ослабевает зрение ночью. В полутьме человек с трудом различает показания приборов. Задачи, которые он легко решал на земле, требуют больших усилий.
На высоте 4 километров человек чувствует слабость, головокружение. Даже несложная работа его утомляет. С подъёмом это ощущение исчезает, кажется, что все опять нормально. Однако это обманчивое благополучие. Резкое движение, случайное усилие, и человек теряет сознание.
Высота 6–7 километров – граница. Сознание висит на «ниточке». В любое мгновение «ниточка» может порваться без всяких видимых причин. У человека нет сил ни работать, ни думать.
О высоте 8 километров в книгах сказано коротко: «Грозит смерть»…
Тиссандье и его товарищи, как удалось установить, достигли высоты 8600 метров. Остальное понятно. Только крепкий организм и привычка к высотным полетам спасли жизнь командиру «Зенита».
Исследования дали ответ и на другой вопрос. Нарушения нормальной деятельности, вызванные высотой, сам человек обычно не ощущает. Больше того. Чем слабее становится сознание, тем легче, спокойнее и увереннее он себя чувствует. И если ему сказать, что он плохо соображает, хуже видит, он не поверит. Кислородный голод вроде опьянения.
Но это внешняя сторона дела. А как высота отражается на работе человеческого двигателя и, в частности, «дыхательного автомата»?
Оказывается – и в этом суть! – автомат не реагирует на высоту, он продолжает действовать так, словно ничего не случилось. Автомат «настроен» на углекислоту. Если её содержание в альвеолярном воздухе поднимется выше нормы, автомат сработает: человек начнёт делать частые и глубокие вдохи, станет задыхаться, ощутит беспокойство…
Однако на высоте содержание газов в атмосфере не меняется. Человек дышит нормально. Поступивший из крови в лёгкие углекислый, газ своевременно удаляется из организма. Дыхательный центр не испытывает раздражения, и автомат спокойно работает, обеспечивая вдох и выдох. И не замечает, что это совсем не тот вдох, что над человеком нависла смертельная опасность.
А вдох действительно не тот. В воздухе, которым дышит человек, по-прежнему 21 процент кислорода. Но сам воздух (и, следовательно, кислород) имеет гораздо меньшую плотность. Как известно, на уровне моря давление воздуха 1 атмосфера, что соответствует 760 миллиметрам ртутного столба. С ростом высоты давление падает. На высоте 2 километров – 596 миллиметров ртутного столба; 6 километров – 354; 8 километров – 267 миллиметров. Уменьшается и парциальное давление кислорода. Если в нормальных условиях оно составляет 160 миллиметров, то при подъёме, скажем, на 6 километров давление кислорода снижается до 74 миллиметров ртутного столба.
Между тем насыщение крови кислородом зависит именно от его парциального давления. Это естественно.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Поиск книг  2500 книг фантастики  4500 книг фэнтези  500 рассказов