Сигнал прибыл в форме одной колоссальной и неструктурированной цепочки бинарных цифр. Без исследования и выявления порядка никаких шансов расшифровать сообщение попросту не было. Следовательно, требовалось искать рациональные способы подразделить целое на меньшие секции.
Можно было попробовать добрую дюжину разных способов. К примеру, изучить статистику локально, где «локальный» регион содержал от тысячи до миллиона цифр. Все инструменты обработки сигнала были доступны для этого анализа. Следуя одной общепринятой процедуре, можно было найти и пометить регионы аномально низкой энтропии – где следующая цифра могла с определенной уверенностью быть предсказана из группы цифр, непосредственно ей предшествующих. Эти регионы могли оказаться указателями «начало сообщения» и «конец сообщения», ибо казалось в высшей степени невероятным, чтобы весь сигнал СЕТИ содержал в себе одно-единственное сообщение. Следовало помнить, сколько информации могло содержаться в двадцати одном миллиарде бинарных цифр. Это было пять тысяч солидных томов.
Могло, однако, так получиться, что регионы низкой энтропии служили всего лишь намеком на какой-то другой вид информации. Энтропийный анализ уже был проведен, но тот, кто его проделал, не выдвинул никаких предположений касательно его значения. Милли увидела целую библиотеку возможных карт, показывающую сигнал разделенным на кусочки и доступным для критического рассмотрения или дальнейшего анализа.
Разумеется, изучать статистическое поведение секций сигнала было не единственным способом искать структуру – и даже, возможно, не самым лучшим. В порядке вполне надежного, но совершенно иного подхода можно было просканировать весь сигнал на предмет пробных последовательностей, которые повторялись снова и снова по всей его длине. Естественно, пробная последовательность должна была быть достаточно длинной, чтобы ее присутствие в сигнале давало какую-то информацию. Если весь сигнал был полностью случайным, то такая короткая последовательность, как, скажем, 1–0-0–1, могла обнаружиться в нем миллиард раз по одной лишь чистой случайности. С другой стороны, если выбрать пробную последовательность из тридцати цифр, можно было ожидать найти ее всего лишь пару десятков раз в случайной цепочке из двадцати одного миллиарда цифр. Присутствие такой тридцатицифровой последовательности пятьдесят или шестьдесят раз оказывалось событием столь невероятным, что тогда с уверенностью можно было заключить, что вы на что-то такое наткнулись.
Впрочем, легко было сказать: «Изучить сигнал на предмет пробных последовательностей достаточно длинных, чтобы являться существенными». Реальная же задача представлялась чудовищной. Существовал миллиард разных последовательностей с тридцатью бинарными цифрами. И просмотреть требовалось все до единой. Эта работа по-прежнему продолжалась.
А когда вы обнаруживали конкретную последовательность слишком часто, чтобы поверить в то, что это просто игра случайности, что шло дальше? Возникал другой, еще более сложный вопрос. Возможно, присутствие цепочки из тридцати цифр указывало на начальную или конечную точку действительного сообщения. Далее, между каждыми двумя цепочками из тридцати цифр, которые вы обнаруживали, наверняка имелись более короткие цепочки из, скажем, шести или двенадцати цифр. Эти цепочки, в особенности если целые их группы оказывались в непосредственной близости, должны были образовывать само сообщение. В человеческих понятиях шести бинарных цифр было достаточно, чтобы закодировать все буквы алфавита, тогда как двенадцати букв хватало для большинства слов. Пусть даже там безусловно не было никакой надежды найти буквы или слова любого человеческого языка, математические универсалии поискать определенно следовало. Самым простым представлялись целые числа. Как только удавалось узнать, где каждая бинарная цепочка начинается и заканчивается, ее численное значение становилось уникальным числом в пределах зеркального отражения (следовало ли читать число слева направо или справа налево). Далее можно было приступать к отысканию символов, которые означали равенство, меньше, больше, возведение в степень и другие обычные арифметические операции.
Но это ставило группы по интерпретации лицом к лицу с самым волнующим вопросом из всех: до какой степени можно было или должно было допускать, что человеческое мышление, человеческое поведение и человеческая наука неким образом приложимы к сообщению СЕТИ?
Насколько чуждое было чуждым? Этот вопрос железно обеспечивал Милли ночные кошмары. Даже в пределах ограниченной группы сотрудников станции «Аргус» она нашла две разные школы мысли. Одни – назовем их оптимистами – полагали, что любые инопланетяне, которые развились достаточно, чтобы посылать сигналы в другие звездные системы, должны были находиться впереди человечества во всех областях науки. Более того, оптимисты были убеждены, что инопланетяне сделают все от них зависящее, чтобы сделать свои сообщения легко читаемыми. Они не прибегнут ни к каким фокусам, таким как полномасштабное кодирование, чтобы снизить объем передаваемых и принимаемых данных.
Пессимисты говорили: да-да, но погодите минутку. Ведь это же инопланетяне, полные чужаки. Технические открытия на протяжении всей человеческой истории вовсе не происходили в самом удобном и логичном порядке. Архимеду страшно не повезло. Интегральное счисление находилось прямо у него под рукой, и, будь ему доступно понятие об арабских цифрах, он бы почти на два тысячелетия опередил Ньютона и Лейбница. Кеплеру же, напротив, повезло. Древние греки, от Евклида до Аполлония, напридумывали сотни разных теорем касательно конических сечений. Когда Кеплеру они потребовались, чтобы заменить старые системы собственными законами, эти теоремы уже лежали наготове.
Чужакам, скорее всего, известны были другие вещи, ибо не существовало фиксированного порядка открытий. Возможно, мы смогли бы предложить им не меньше, чем они нам. Что, если они никогда не изобретали алфавита или позиционной системы счисления в математике? Тогда их сообщения могли сплошь стать идеограммами, а их числа – подобием римских цифр. Но куда более вероятно они стали бы использовать что-то еще менее понятное и постижимое, нежели и то, и другое.
Милли на сей счет давным-давно приняла собственное решение. Нельзя было позволять себе впадать и в крайний оптимизм, и в крайний пессимизм. На стороне пессимизма было то, что любые инопланетяне, безусловно, умственно и физически отличались от людей. В конце концов, на то они были и чужаки. Их языки, системы счисления и порядок эволюции идей должны были быть совершенно другими. С другой стороны, на стороне оптимизма было то, что мыслительные процессы инопланетян с необходимостью должны были следовать универсальным законам логики. Любому, кто озадачивался отправкой сообщений далеко через космос, следовало заботиться о том, чтобы его послания не только приняли, но и поняли.
Как только вы принимали два этих допущения, у вас появлялись определенные гарантии. Если взять простой пример, ни один разумный инопланетянин никогда не послал бы сообщение 2? 2=4, если только там не имелось другого независимого свидетельства, как следует интерпретировать символ»?». Такое сообщение стало бы слишком двусмысленным. Адресат не смог бы понять, стоит ли знак вопроса вместо плюса (2+2=4), знака умножения (2*2=4) или значка возведения в степень (22=4).
Если уж речь шла о Милли, то она точно знала, как она составила бы и послала сообщение СЕТИ. Прежде всего требовалось определить специальные символы, которые обеспечивали обозначение начала и конца значимого сегмента; затем надо было продемонстрировать положительные целые числа, снабдив их достаточными примерами, такими как последовательность простых чисел, чтобы адресат мог быть абсолютно уверен в том, что здесь нет никакого неправильного истолкования.
Далее шли символы обычной арифметики с примерами, показывающими, как складывать, вычитать, умножать и делить. Отсюда был короткий шажок к отрицательным числам, дробям, степеням и иррациональным числам. Мнимые числа следовало вводить, используя дробные степени отрицательных чисел. Затем можно было переходить к рядам степеней и таким элементарным трансцендентным функциям, как синусы, косинусы, логарифмы и экспоненты. В каждом случае следовало давать достаточное количество примеров, чтобы позаботиться об отсутствии недопонимания. Обеспечив ряды выражений для таких универсальных трансцендентов, как»р» или «e», вы обеспечивали подтверждение того, что все это прочитывается верно, приводя одно из долговременных чудес математики, формулу, которая загадочным образом связывала трансцендентные и мнимые числа с базовыми цифровыми строительными блоками из единиц и нулей:
eiр+1=0
Математика представляла собой простой и очевидный способ, чтобы начать. После этого Милли перешла бы к астрономии, физике, химии и наконец к самому сложному – языку.
Проблема, разумеется, заключалась в том, что от Милли в данном случае ничего не зависело. Она не посылала сообщение. Она его принимала. Разница, в терминах самомнения, равнялась разнице между врачом и пациентом.
Хорошие новости заключались в том, что Милли работала не одна. Люди столь же умные, что и она, а возможно, неизмеримо умнее, были ее союзниками. Расставленные перед Милли дисплеи давали ей общий вид всего сигнала в схематической форме, подразделенного на двадцать один регион.
Пользуясь пультом, чтобы контролировать скорость продвижения, Милли принялась сканировать всю длину сигнала. Группа Сети Головоломок работала совместно, прикрепляя свои анализы к соответствующим регионам. Результат всего этого был подобен гигантской змее, узкий хребет которой образовывали цепочки цифр самого сигнала. Тут и там, в тех местах, где было обнаружено что-то особенно интересное и важное, змея вспучивалась как питон, только что проглотивший свинью.
Милли остановила сканирование, чтобы изучить секцию 7, четвертую выпуклость, которая на первый взгляд казалась больше остальных. В специальных рамочках были предложены комментарии:
Аттобой: Структура здесь странная. В высокоэнтропийные последовательности средней длины в 106 цифр регулярно вкраплены низкоэнтропийные регионы постоянной длины в 3,3554*107 цифр. Есть мнения?
Врасплох: Да. Мы здесь можем наблюдать фрагменты «текста» (переменные, но примерно равных длин), которые вводят или описывают «картинку» (что-то в формате изображения, с постоянным размером блока). Возможно, квадратные матрицы черно-белых изображений, в каждой по 6.000*6.000 элементов?
Клавдий: Более вероятно, изображение серой гаммы 4.096*4.096 (212*212 – это соответствует понятию о бинарных репрезентациях), с 2 битами (4 уровня) для каждой единицы. Это согласуется с точным размером низкоэнтропийных регионов, 33.554.432 бита.
Врасплох: С таким же успехом может быть 2.048*2.048, с 256 серыми уровнями (8-битовыми).
Клавдий: Должно быть достаточно просто выяснить, что именно. Если допустить конкретную длину строки и сделать перекрестные корреляции успешных строк, точная длина строки выпрыгнет прямо под нос, когда мы до нее доберемся, поскольку корреляция будет гораздо выше. Дайте я посмотрю.
Данная кучка комментариев на этом заканчивалась. Предположительно Клавдий еще не получила ответа на свой вопрос, или таковой не «выпрыгнул прямо под нос». Милли двинулась дальше.
Седьмая выпуклость на хребте сигнала, в секции 12, содержала в себе ремарки, схожие с предыдущими, если не считать трех дополнительных комментариев:
Мегахиропс: В данном случае низкоэнтропийные регионы имеют постоянную длину в 4.194.304 бита, что составляет ровно одну восьмую длины регионов в секции 7. Никто не находит это достаточно удивительным?
Дух: Мы, вероятно, сделали бы все регионы одного и того же размера. Различие может быть частью сообщения, пытающейся что-то нам передать.
Клавдий: А не могут это быть линейные рисунки – бинарные изображения, черно-белые без всяких серых оттенков?
Девятая выпуклость поддерживала гипотезу, уже выдвигавшуюся в ранней истории СЕТИ:
Джокер: Частотный анализ данной секции предполагает, что мы здесь имеем дело с основанием-4 арифметическим скорее, чем с основанием-2 бинарным, которое мы видим везде. Возникает сильное искушение интерпретировать это как биологическое описание в терминах цепочки из четырех нуклеотидов.
Аттобой: Остерегайтесь антропоморфизма. Впрочем, я согласен – искушение очень сильное. Я попытаюсь скоррелировать эту секцию со всем, что имеется в геномной библиотеке.
Не было ничего удивительного в том, что Аттобой до сих пор не сообщил о результатах своих усилий. Задача представлялась просто чудовищной. Упомянутая библиотека содержала в себе полные геномы для двух с лишним миллионов видов – от людей, дубов и грибов до самых мельчайших и простейших вирусов.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
Можно было попробовать добрую дюжину разных способов. К примеру, изучить статистику локально, где «локальный» регион содержал от тысячи до миллиона цифр. Все инструменты обработки сигнала были доступны для этого анализа. Следуя одной общепринятой процедуре, можно было найти и пометить регионы аномально низкой энтропии – где следующая цифра могла с определенной уверенностью быть предсказана из группы цифр, непосредственно ей предшествующих. Эти регионы могли оказаться указателями «начало сообщения» и «конец сообщения», ибо казалось в высшей степени невероятным, чтобы весь сигнал СЕТИ содержал в себе одно-единственное сообщение. Следовало помнить, сколько информации могло содержаться в двадцати одном миллиарде бинарных цифр. Это было пять тысяч солидных томов.
Могло, однако, так получиться, что регионы низкой энтропии служили всего лишь намеком на какой-то другой вид информации. Энтропийный анализ уже был проведен, но тот, кто его проделал, не выдвинул никаких предположений касательно его значения. Милли увидела целую библиотеку возможных карт, показывающую сигнал разделенным на кусочки и доступным для критического рассмотрения или дальнейшего анализа.
Разумеется, изучать статистическое поведение секций сигнала было не единственным способом искать структуру – и даже, возможно, не самым лучшим. В порядке вполне надежного, но совершенно иного подхода можно было просканировать весь сигнал на предмет пробных последовательностей, которые повторялись снова и снова по всей его длине. Естественно, пробная последовательность должна была быть достаточно длинной, чтобы ее присутствие в сигнале давало какую-то информацию. Если весь сигнал был полностью случайным, то такая короткая последовательность, как, скажем, 1–0-0–1, могла обнаружиться в нем миллиард раз по одной лишь чистой случайности. С другой стороны, если выбрать пробную последовательность из тридцати цифр, можно было ожидать найти ее всего лишь пару десятков раз в случайной цепочке из двадцати одного миллиарда цифр. Присутствие такой тридцатицифровой последовательности пятьдесят или шестьдесят раз оказывалось событием столь невероятным, что тогда с уверенностью можно было заключить, что вы на что-то такое наткнулись.
Впрочем, легко было сказать: «Изучить сигнал на предмет пробных последовательностей достаточно длинных, чтобы являться существенными». Реальная же задача представлялась чудовищной. Существовал миллиард разных последовательностей с тридцатью бинарными цифрами. И просмотреть требовалось все до единой. Эта работа по-прежнему продолжалась.
А когда вы обнаруживали конкретную последовательность слишком часто, чтобы поверить в то, что это просто игра случайности, что шло дальше? Возникал другой, еще более сложный вопрос. Возможно, присутствие цепочки из тридцати цифр указывало на начальную или конечную точку действительного сообщения. Далее, между каждыми двумя цепочками из тридцати цифр, которые вы обнаруживали, наверняка имелись более короткие цепочки из, скажем, шести или двенадцати цифр. Эти цепочки, в особенности если целые их группы оказывались в непосредственной близости, должны были образовывать само сообщение. В человеческих понятиях шести бинарных цифр было достаточно, чтобы закодировать все буквы алфавита, тогда как двенадцати букв хватало для большинства слов. Пусть даже там безусловно не было никакой надежды найти буквы или слова любого человеческого языка, математические универсалии поискать определенно следовало. Самым простым представлялись целые числа. Как только удавалось узнать, где каждая бинарная цепочка начинается и заканчивается, ее численное значение становилось уникальным числом в пределах зеркального отражения (следовало ли читать число слева направо или справа налево). Далее можно было приступать к отысканию символов, которые означали равенство, меньше, больше, возведение в степень и другие обычные арифметические операции.
Но это ставило группы по интерпретации лицом к лицу с самым волнующим вопросом из всех: до какой степени можно было или должно было допускать, что человеческое мышление, человеческое поведение и человеческая наука неким образом приложимы к сообщению СЕТИ?
Насколько чуждое было чуждым? Этот вопрос железно обеспечивал Милли ночные кошмары. Даже в пределах ограниченной группы сотрудников станции «Аргус» она нашла две разные школы мысли. Одни – назовем их оптимистами – полагали, что любые инопланетяне, которые развились достаточно, чтобы посылать сигналы в другие звездные системы, должны были находиться впереди человечества во всех областях науки. Более того, оптимисты были убеждены, что инопланетяне сделают все от них зависящее, чтобы сделать свои сообщения легко читаемыми. Они не прибегнут ни к каким фокусам, таким как полномасштабное кодирование, чтобы снизить объем передаваемых и принимаемых данных.
Пессимисты говорили: да-да, но погодите минутку. Ведь это же инопланетяне, полные чужаки. Технические открытия на протяжении всей человеческой истории вовсе не происходили в самом удобном и логичном порядке. Архимеду страшно не повезло. Интегральное счисление находилось прямо у него под рукой, и, будь ему доступно понятие об арабских цифрах, он бы почти на два тысячелетия опередил Ньютона и Лейбница. Кеплеру же, напротив, повезло. Древние греки, от Евклида до Аполлония, напридумывали сотни разных теорем касательно конических сечений. Когда Кеплеру они потребовались, чтобы заменить старые системы собственными законами, эти теоремы уже лежали наготове.
Чужакам, скорее всего, известны были другие вещи, ибо не существовало фиксированного порядка открытий. Возможно, мы смогли бы предложить им не меньше, чем они нам. Что, если они никогда не изобретали алфавита или позиционной системы счисления в математике? Тогда их сообщения могли сплошь стать идеограммами, а их числа – подобием римских цифр. Но куда более вероятно они стали бы использовать что-то еще менее понятное и постижимое, нежели и то, и другое.
Милли на сей счет давным-давно приняла собственное решение. Нельзя было позволять себе впадать и в крайний оптимизм, и в крайний пессимизм. На стороне пессимизма было то, что любые инопланетяне, безусловно, умственно и физически отличались от людей. В конце концов, на то они были и чужаки. Их языки, системы счисления и порядок эволюции идей должны были быть совершенно другими. С другой стороны, на стороне оптимизма было то, что мыслительные процессы инопланетян с необходимостью должны были следовать универсальным законам логики. Любому, кто озадачивался отправкой сообщений далеко через космос, следовало заботиться о том, чтобы его послания не только приняли, но и поняли.
Как только вы принимали два этих допущения, у вас появлялись определенные гарантии. Если взять простой пример, ни один разумный инопланетянин никогда не послал бы сообщение 2? 2=4, если только там не имелось другого независимого свидетельства, как следует интерпретировать символ»?». Такое сообщение стало бы слишком двусмысленным. Адресат не смог бы понять, стоит ли знак вопроса вместо плюса (2+2=4), знака умножения (2*2=4) или значка возведения в степень (22=4).
Если уж речь шла о Милли, то она точно знала, как она составила бы и послала сообщение СЕТИ. Прежде всего требовалось определить специальные символы, которые обеспечивали обозначение начала и конца значимого сегмента; затем надо было продемонстрировать положительные целые числа, снабдив их достаточными примерами, такими как последовательность простых чисел, чтобы адресат мог быть абсолютно уверен в том, что здесь нет никакого неправильного истолкования.
Далее шли символы обычной арифметики с примерами, показывающими, как складывать, вычитать, умножать и делить. Отсюда был короткий шажок к отрицательным числам, дробям, степеням и иррациональным числам. Мнимые числа следовало вводить, используя дробные степени отрицательных чисел. Затем можно было переходить к рядам степеней и таким элементарным трансцендентным функциям, как синусы, косинусы, логарифмы и экспоненты. В каждом случае следовало давать достаточное количество примеров, чтобы позаботиться об отсутствии недопонимания. Обеспечив ряды выражений для таких универсальных трансцендентов, как»р» или «e», вы обеспечивали подтверждение того, что все это прочитывается верно, приводя одно из долговременных чудес математики, формулу, которая загадочным образом связывала трансцендентные и мнимые числа с базовыми цифровыми строительными блоками из единиц и нулей:
eiр+1=0
Математика представляла собой простой и очевидный способ, чтобы начать. После этого Милли перешла бы к астрономии, физике, химии и наконец к самому сложному – языку.
Проблема, разумеется, заключалась в том, что от Милли в данном случае ничего не зависело. Она не посылала сообщение. Она его принимала. Разница, в терминах самомнения, равнялась разнице между врачом и пациентом.
Хорошие новости заключались в том, что Милли работала не одна. Люди столь же умные, что и она, а возможно, неизмеримо умнее, были ее союзниками. Расставленные перед Милли дисплеи давали ей общий вид всего сигнала в схематической форме, подразделенного на двадцать один регион.
Пользуясь пультом, чтобы контролировать скорость продвижения, Милли принялась сканировать всю длину сигнала. Группа Сети Головоломок работала совместно, прикрепляя свои анализы к соответствующим регионам. Результат всего этого был подобен гигантской змее, узкий хребет которой образовывали цепочки цифр самого сигнала. Тут и там, в тех местах, где было обнаружено что-то особенно интересное и важное, змея вспучивалась как питон, только что проглотивший свинью.
Милли остановила сканирование, чтобы изучить секцию 7, четвертую выпуклость, которая на первый взгляд казалась больше остальных. В специальных рамочках были предложены комментарии:
Аттобой: Структура здесь странная. В высокоэнтропийные последовательности средней длины в 106 цифр регулярно вкраплены низкоэнтропийные регионы постоянной длины в 3,3554*107 цифр. Есть мнения?
Врасплох: Да. Мы здесь можем наблюдать фрагменты «текста» (переменные, но примерно равных длин), которые вводят или описывают «картинку» (что-то в формате изображения, с постоянным размером блока). Возможно, квадратные матрицы черно-белых изображений, в каждой по 6.000*6.000 элементов?
Клавдий: Более вероятно, изображение серой гаммы 4.096*4.096 (212*212 – это соответствует понятию о бинарных репрезентациях), с 2 битами (4 уровня) для каждой единицы. Это согласуется с точным размером низкоэнтропийных регионов, 33.554.432 бита.
Врасплох: С таким же успехом может быть 2.048*2.048, с 256 серыми уровнями (8-битовыми).
Клавдий: Должно быть достаточно просто выяснить, что именно. Если допустить конкретную длину строки и сделать перекрестные корреляции успешных строк, точная длина строки выпрыгнет прямо под нос, когда мы до нее доберемся, поскольку корреляция будет гораздо выше. Дайте я посмотрю.
Данная кучка комментариев на этом заканчивалась. Предположительно Клавдий еще не получила ответа на свой вопрос, или таковой не «выпрыгнул прямо под нос». Милли двинулась дальше.
Седьмая выпуклость на хребте сигнала, в секции 12, содержала в себе ремарки, схожие с предыдущими, если не считать трех дополнительных комментариев:
Мегахиропс: В данном случае низкоэнтропийные регионы имеют постоянную длину в 4.194.304 бита, что составляет ровно одну восьмую длины регионов в секции 7. Никто не находит это достаточно удивительным?
Дух: Мы, вероятно, сделали бы все регионы одного и того же размера. Различие может быть частью сообщения, пытающейся что-то нам передать.
Клавдий: А не могут это быть линейные рисунки – бинарные изображения, черно-белые без всяких серых оттенков?
Девятая выпуклость поддерживала гипотезу, уже выдвигавшуюся в ранней истории СЕТИ:
Джокер: Частотный анализ данной секции предполагает, что мы здесь имеем дело с основанием-4 арифметическим скорее, чем с основанием-2 бинарным, которое мы видим везде. Возникает сильное искушение интерпретировать это как биологическое описание в терминах цепочки из четырех нуклеотидов.
Аттобой: Остерегайтесь антропоморфизма. Впрочем, я согласен – искушение очень сильное. Я попытаюсь скоррелировать эту секцию со всем, что имеется в геномной библиотеке.
Не было ничего удивительного в том, что Аттобой до сих пор не сообщил о результатах своих усилий. Задача представлялась просто чудовищной. Упомянутая библиотека содержала в себе полные геномы для двух с лишним миллионов видов – от людей, дубов и грибов до самых мельчайших и простейших вирусов.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68