А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

Кэрролл Льюис

Логическая игра


 

Тут находится бесплатная электронная фантастическая книга Логическая игра автора, которого зовут Кэрролл Льюис. В электроннной библиотеке fant-lib.ru можно скачать бесплатно книгу Логическая игра в форматах RTF, TXT и FB2 или же читать книгу Кэрролл Льюис - Логическая игра онлайн, причем полностью без регистрации и без СМС.

Размер архива с книгой Логическая игра = 133.46 KB

Логическая игра - Кэрролл Льюис => скачать бесплатно электронную фантастическую книгу



«Библиотечка «Квант». Выпуск 73. Логическая игра»: Наука. Главная редакция физ.-мат. литературы; М.; 1991
ISBN 5-02-014220-4
Аннотация
Автор «Алисы в стране чудес» был, как известно, математиком. В данной книге он описывает игру, которая позволяет графическим образом из двух суждений выводить третье, т.е. выражаясь терминами логики, решать силлогизмы.
Льюис Кэрролл
Логическая игра
Пред взором мысленным моим
Одно проходит за другим
Дней давних смутные виденья.
Но образ твой, сколь я ни ждал,
Пред мною так и не предстал
Ни наяву, ни в сновиденьях,
Мой милый, нежный друг!
И все чудится порой
Твоя улыбка, голос твой,
Звучащий где-то вдалеке,
И снова время прочь летит,
И, словно прежде, вновь лежит
Твоя рука в моей руке,
Прелестный, юный друг!
Пусть дни мои к концу идут -
Немало радостных минут
Мне было послано судьбой!
Лишь ты не знала бы забот,
Печалей, горестей, невзгод,
О юный друг мой,
Милый, нежный друг!
Введение
Чтобы играть в эту игру, необходимо иметь девять фишек: четыре фишки одного цвета и пять - другого. Например, четыре красных и пять черных.
Кроме девяти фишек необходимо также иметь по крайней мере одного игрока. Мне не известна ни одна игра, в которой число участников было бы меньше . В то же время я знаю несколько игр, в которых число игроков больше , чем в нашей игре. Например, чтобы играть в крокет, необходимо собрать команду из двадцати двух игроков. Разумеется, найти одного игрока гораздо легче, чем найти двадцать два игрока. Вместе с тем нельзя не заметить, что хотя одного игрока для нашей игры вполне достаточно, намного интереснее играть в нее вдвоем и помогать друг другу исправлять допущенные ошибки.
Наша игра обладает еще одним преимуществом. Она не только служит неисчерпаемым источником развлечения (число умозаключений, которые можно вывести, играя в нашу игру, бесконечно), но и позволяет игроку узнавать нечто новое (правда, в весьма умеренных дозах). Впрочем, особого вреда от этого нет, поскольку удовольствия она доставляет неизмеримо больше.


Цвета фишек

Стало вдруг светлым-светло:
Солнце КРАСНОЕ взошло.


А у ночи ЧЕРНЫЙ цвет:
Солнца на небе уж нет.


Глава 1. Старые истины на новый лад
1. Суждения
«Некоторые свежие булочки вкусные».
«Ни одна свежая булочка не вкусная».
«Все свежие булочки вкусные».
Перед вами три суждения - только такие три типа суждений мы и будем использовать в этой игре. Первое, что необходимо сделать, - это научиться изображать их на нашей диаграмме.
Начнем с рассуждения «Некоторые свежие булочки вкусные», но прежде сделаем одно замечание. Оно необычайно важно и понять его сразу не так-то просто, поэтому читать его надо очень внимательно.
В окружающем нас мире имеется много предметов (таких, как «березки», «бараны», «бациллы», «быки» и т. д.). Предметы эти обладают множеством признаков (таких, как, например, «белые», «бестолковые», «болезнетворные», «бодливые» и т. п.; в действительности любое свойство, которое «признано» за предметом, или, как еще говорят, «принадлежит ему», может служить его признаком). Если нам нужно назвать предмет, мы употребляем существительное . Если же нужно назвать какой-нибудь признак, мы употребляем прилагательное . Наверное, найдутся люди, которым захочется спросить: «Может ли существовать предмет, не обладающий никакими признаками?» Это очень трудный вопрос, и я даже не буду пытаться ответить на него. Мы просто гордо отвернемся и будем хранить презрительное молчание, делая вид, будто он не достоин нашего внимания. Но если вопрос поставлен иначе и люди хотят знать, могуть ли существовать признаки, не принадлежащие никаким предметам, то мы сразу же сможем ответить: «Нет, как не могут грудные младенцы самостоятельно совершать поездки по железной дороге!» Ведь не приходилось же вам никогда видеть, как «блестящее» плавает в воздухе или рассыпано по полу, без того, чтобы хоть какой-нибудь предмет не был блестящим?
К чем я веду весь этот длинный (и довольно бессвязный) разговор? А вот к чему. Между именами двух предметов или между именами двух предметов или между именами двух признаков можно вставить слово «есть» или «суть» (или подразумевать, что такое слово вставлено), и при этом результат получится вполне осмысленным. Например, «некоторые свиньи суть жирные животные» или «розовый - это светло-красный». Но если вы вставите слово «есть» или «суть» между именем предмета и именем признака (например, «некоторые свиньи суть розовые»), то ничего хорошего из этого не получится (ибо как может предмет быть признаком?), если тот, с кем вы говорите, не знает заранее, что вы имеете в виду. Мне кажется, что добиться взаимопонимания было бы проще всего, если бы мы условились повторять существительное в конце предложения. В этом случае предложение, если его записать полностью, имело бы вид: «Некоторые свиньи суть розовые (свиньи)». Никаких противоречий при этом не возникает. Итак, чтобы суждение «Некоторые свежие булочки вкусные» имело смысл, необходимо предположить, что оно записано в развернутом виде: «Некоторые свежие булочки суть вкусные (булочки)».
Полное суждение содержит два термина : один из них - «некоторые булочки», другой - «вкусные булочки». Термин «некоторые булочки», о котором идет речь, называется субъектом суждения, термин «вкусные булочки» - предикатом суждения. Наше суждение частное , поскольку в нем говорится не о в всем субъекте, а лишь о его части . Суждения «Ни одна свежая булочка не вкусная» и «Все свежие булочки вкусные» называются общими , поскольку в каждом из них речь идет обо всем предикате: в первом из них отрицается а во втором утверждается «вкуснота» всего класса «свежих булочек». Наконец, если вы захотите узнать, что же такое суждение , то мы можем предложить вам следующее определение: «Суждение - это предложение, утверждающее, что некоторые или все предметы, принадлежащие определенному классу, называемому субъектом, одновременно являются предметами, принадлежащими другому классу, называемому предикатом» (или что ни один предмет, принадлежащий классу «субъект», не является предметом, принадлежащим классу «предикат»).
Эти девять слов - суждение , признак , термин , суждения , субъект , предикат , частное и общее суждение - окажутся необычайно полезными, если кому-нибудь из ваших приятелей придет в голову поинтересоваться, не приходилось ли вам когда-нибудь изучать логику. Не забудьте употребить в своем ответе все девять слов, и ваш приятель удалится совершенно потрясенным, «став не только мудрее, но и печальнее». Взгляните теперь на меньшую диаграмму (с. 9). Предположим, что она нарисована на подносе, который вмещает все булочки в мире (разумеется, размеры его должны быть достаточно велики). Пусть все свежие булочки находятся на верхней половине диаграммы (помеченной буквой x), а все остальные (т. е. не свежие) - на нижней (помеченной буквой x'). На нижней половине окажутся черствые булочки, окаменевшие булочки, допотопные булочки (если таковые существуют - лично мне их видеть не приходилось) и т. д. Сделаем еще одно предположение: будем считать, что все вкусные булочки находятся на левой половине диаграммы (помеченной буквой y), а все прочие (т.е. не вкусные) булочки - на правой половине (помеченной буквой y'). Таким образом, x временно означает «свежие», x' - «несвежие», y - «вкусные» и y' - «невкусные».
Как вы думаете, какие булочки находятся в клетке 5?
Вы видите, что эта клетка расположена в верхней половине диаграммы. Следовательно, если в ней есть хоть какие-нибудь булочки, то они должны быть свежими . В то же время клетка 5 расположена в левой половине диаграммы; следовательно, принадлежащие ей булочки должны быть вкусными . Таким образом, если мы воспользуемся буквенными обозначениями, «быть xy».
Обратите внимание, что буквы x и y написаны на двух сторонах клетки 5. Как вы увидите в дальнейшем, это позволяет необычайно просто узнавать, какими признаками обладают предметы, находящиеся в любой из клеток. Возьмем, например, клетку 7. Если в ней есть булочки, то они должны быть x'y, т. е. «несвежие и вкусные».
Примем теперь еще одно соглашение: будем считать, что клетка «занята», т. е. в ней находятся некоторые булочки, если на ней стоит красная фишка. Слово «некоторые» в логике означает «одна или несколько», поэтому одной-единственной булочки в клетке совершенно достаточно для того, чтобы мы могли сказать: «В этой клетке находятся некоторые булочки». Условимся также считать, что черная фишка, стоящая в какой-нибудь клетке, означает, что эта клетка «пуста», т. е. в ней нет ни одной булочки.
Поскольку субъектом нашего суждения служат «свежие булочки», мы временно будем рассматривать только верхнюю половину подноса, где находятся все булочки, обладающие признаком x, т. е. «свежие».
Предположим, что, сосредоточив внимание на верхней половине диаграммы, мы обнаружили, что она размечена следующим образом:

т. е. красная фишка стоит на клетке 5. Что можно сказать в этом случае о классе «свежих булочек»?
А то, что некоторые из них находятся в клетке xy, т. е. помимо признака x, общего для двух верхних клеток, обладают еще и признаком y (т. е. «свежие»). Иначе говоря, мы получили суждение «Некоторые x-булочки суть y (булочки)», или, если подставить вместо x и y их значения, «Некоторые свежие булочки суть вкусные (булочки)». Кратко то же самое можно выразить так: «Некоторые свежие булочки вкусные». Наконец-то мы узнали, как изображается на диаграмме первое из суждений, приведенных в самом начале этого параграфа!
Если вы недостаточно уяснили то, о чем я говорил до сих пор, вам лучше не продолжать чтения, а вернуться назад и перечитать этот параграф еще несколько раз - до тех пор, пока вы не разберетесь во всем до конца . Зато, как только вы усвоите эту часть, все остальное не вызовет у вас никаких затруднений.
Рассмотрение двух других суждений будет несколько проще, если мы условимся вообще опускать слово «булочки». Я нахожу, что весь класс предметов, для которых предназначается поднос с начерченной на нем диаграммой, удобно называть «Универсум », или «Мир ». Чтобы испробовать новый термин, скажем, например: «Рассмотрим Мир булочек». (Звучит хорошо, не правда ли?)
Разумеется, мы можем брать не только булочки, но и другие предметы и высказывать суждения о «Мире ящериц» или даже о «Мире ос-шершней». (Вы, конечно, согласны, что последний «Мир» просто очарователен и жить в нем - одно удовольствие?)
Вернемся к нашей диаграмме. Мы уже знаем, что

означает «Некоторые x суть y», т. е. «Некоторые свежие суть вкусные».
Разумеется, вы сразу, без всяких объяснений, догадаетесь (я просто уверен в этом), что

означает «Некоторые x суть y'», т. е. «Некоторые свежие суть невкусные».
Поставим теперь на клетку 5 черную фишку и спросим себя, что означает

Мы видим, что клетка xy пуста . Следовательно, нуль в клетке 5 соответствует суждению «Ни один x не есть y», или «Ни одна свежая булочка не вкусная», а это не что иное, как второе из трех суждений, приведенных в начале параграфа.
Точно так же диаграмма

означает «Ни один x не есть y'», или «Ни одна свежая булочка не невкусная».
А как перевести на обычный язык такую диаграмму

Думаю, что вы и без моей помощи разберетесь, что с ее помощью записано двойное суждение: «Некоторые x суть y, и некоторые x суть y'», т. е. «Некоторые свежие (булочки) вкусны, а некоторые свежие (булочки) невкусные».
Может быть, диаграмма

вам покажется более сложной.
Она означает, что «Ни один x не есть y, и ни один x не есть y'», т. е. «Ни одна свежая (булочка) не вкусная, и ни одна свежая (булочка) не невкусная». Отсюда следует весьма любопытное заключение: «Ни одна свежая булочка не существует», т. е. «Ни одна булочка не свежая». Оно связано с тем, что разбиение класса «свежих булочек» на «вкусные» и «невкусные» булочки, если взять их вместе, исчерпывают весь класс «свежих булочек». Иначе говоря, все свежие булочки, которые только существуют, должны принадлежать либо множеству «вкусных булочек», либо множеству «невкусных булочек».
Предположим, что вам необходимо изобразить на диаграмме с помощью фишек суждение, противоположное суждению «Ни одна булочка не свежая», т. е. суждение «Некоторые булочки свежие» (или, если воспользоваться уже употреблявшимися буквенными обозначениями, «Некоторые булочки суть x»). Как это сделать?
Подобная задача вряд ли поставит вас в тупик. Ясно, что красную фишку нужно поставить куда-то на x-половину подноса, поскольку известно, что имеется некоторое количество свежих булочек. Поставить красную фишку на левую клетку нельзя, поскольку вы не можете с уверенностью сказать, что эти булочки вкусные . Точно так же нельзя поставить красную фишку и на правую клетку: ведь ни откуда не следует, что эти булочки невкусные .
Что же делать? Мне кажется, что лучший выход из создавшегося затруднительного положения - поставить красную фишку на линию , отделяющую клетку xy от клетки xy'.

Логическая игра - Кэрролл Льюис => читать онлайн фантастическую книгу далее


Было бы неплохо, чтобы фантастическая книга Логическая игра писателя-фантаста Кэрролл Льюис понравилась бы вам!
Если так получится, тогда вы можете порекомендовать эту книгу Логическая игра своим друзьям-любителям фантастики, проставив гиперссылку на эту страницу с произведением: Кэрролл Льюис - Логическая игра.
Ключевые слова страницы: Логическая игра; Кэрролл Льюис, скачать бесплатно книгу, читать книгу онлайн, полностью, полная версия, фантастика, фэнтези, электронная
Поиск книг  2500 книг фантастики  4500 книг фэнтези  500 рассказов