Так что же характеризует подсчитанная по формуле Шеннона величина энтропии текста, выражаемая количеством бит? Только лишь одно свойство этого текста — степень его упорядоченности или, иными словами, степень его отклонения от состояния полного хаоса, при котором все буквы имели бы равную вероятность, а текст превратился бы в бессмысленный набор букв.
Упорядоченность текста (или любой другой исследуемой системы) будет тем больше, чем больше различие вероятностей и чем больше вероятность последующего события будет зависеть от вероятностей предыдущих событий8. При этом,
согласно негэнтропийному принципу информации количество информации, выражающее этот порядок, будет равно уменьшению энтропии системы по сравнению с максимально возможной величиной энтропии, соответствующей отсутствию упорядоченности и наиболее хаотичному состоянию систем9.
Методы исчисления информации, предложенные Шенноном, позволяют выявить соотношение количества предсказуемой (то есть формируемой по определенным правилам) информации и количества той неожиданной информации, которую нельзя заранее предсказать.
Содержащуюся в правилах информацию Шеннон определил как ИЗБЫТОЧНУЮ, потому что знание правил построения сообщений позволяет предсказывать появление букв (или других символов) раньше, чем они будут сообщены по линии связи.
Таким способом удается в той или иной степени «разгрузить» предназначенный для передачи сообщений канал. Проведенный Шенноном анализ английских текстов показал, что содержащаяся в них избыточная информация составляет около 80% от общего количества информации, которое заключает в себе письменный текст. Остальные 20% — это та самая энтропия, благодаря которой текст может служить источником непредсказуемой энергии10.
Если бы текстовые, устные или зрительные (в частности телевизионные) сообщения были полностью лишены энтропии, они не приносили бы получателям сообщений никаких новостей.
Если бы письменный текст строился только на основании заранее сформулированных правил, то, установив эти правила по тексту первой страницы, можно было бы заранее предсказать, что будет написано на страницах 50, 265, 521 и т.д.
ПРЕДЕЛЫ ЭВОЛЮЦИОННОЙ ИЗМЕНЧИВОСТИ ИНФОРМАЦИОННЫХ СИСТЕМ
Наиболее наглядной иллюстрацией информационно-энтропийных закономерностей и ограничений эволюционных процессов может служить письменный текст. А поскольку текст есть не что иное, как закодированное отражение устной речи, имеет смысл в дальнейшем вести речь об эволюции языка.
Примерами эволюционных изменений языка могут служить, в частности, образование неологизмов, заимствование иностранных слов и др.
Приобщение бывших социалистических стран к международному рынку сопровождается ассимиляцией таких терминов, как «менеджмент», «маркетинг», «дилер» и т.п. С переходом к парламентским формам управления государством в бывших социалистических странах приобрели популярность такие понятия, как «консенсус» и «плюрализм».
Процесс вовлечения в лексикон новых слов имеет ряд существенных ограничений. Необходимым условием ассимиляции иностранных слов оказывается адаптация этих слов к новой языковой среде. При включении иностранного слова в лексикон нового языка, слово это должно подчиняться действующим в этом языке правилам согласования слов (т. е. правилам склонения, сопряжения и др.). Подобная адаптация аналогична процессам обучения живых организмов правилам поведения в необычной для них среде).
В свою очередь правила согласования слов подчиняются требованиям, возникающим на еще более высоких уровнях языковой структуры.
Эти требования зависят прежде всего от смыслового содержания текста, от стиля, присущего составителю, данного текста и, наконец, от всего набора грамматических и фонетических правил данного языка.
Например, слово СПУТНИК было введено в русский язык Достоевским. Из бытовой сферы ( «спутник жизни ») это слово распространилось в область астрономии («Луна — спутник Земли») и стало международным словом после того, как в Советском Союзе был запущен первый искусственный спутник Земли. Однако, при всех трансформациях смысла форма этого слова определялась правилами грамматики, установленными вместе с возникновением языка. Об этом свидетельствует совпадение структуры слова С-ПУТ-НИК с такими аналогами, как СО-РАТ-НИК и СО-ПЛЕМЕН-НИК, образованными от корней древних слов ПЛЕМЯ и РАТЬ.
С биологическим и видами тоже могут происходить аналогичные метаморфозы. В результате мутаций может родиться заяц, у которого уши будут короче, чем у собратьев, или его шерстяной покров приобретет необычный цвет. Эти признаки он передаст по наследству, быть может, они закрепятся в потомстве, но при этом потомки нашего зайца тоже останутся зайцами, но ни в коем случае не превратятся в волка или лисицу и, уж тем более, не примкнут к отряду приматов. Подобно тому, как структура нового слова «спутник» совпадает со структурой древних слов «соратник» и «соплеменник», внутренняя и внешняя структура организма современного зайца повторяет структуру зайца, появившегося в результате акта творения на нашей Земле.
Мутациям могут подвергаться только второстепенные признаки, а основные признаки вида остаются неизменными, подобно тому, как в приведенных выше примерах словообразований неизменными остаются определяющие смысловое значение каждого слова корни ПУТЬ, ПЛЕМЯ и РАТЬ. При этом могут меняться второстепенные признаки слова (префиксы, суффиксы, окончания), превращая ПУТЬ в СПУТНИК. ПОПУТЧИК, ПУТЕВОЙ, ПУТЕВКА, РАСПУТИЦА, БЕСПУТНЫЙ, ПУТЕВОДНЫЙ и т.п.
Изначальный смысл слова ПУТЬ при этом всюду останется неизменным, а основанные на коренном слове словообразования могут приобретать те или иные оттенки в процессе последующей эволюции языка.
Каждое новое слово подчиняется правилам, сохраняемым на высоких иерархических уровнях информационно-энтропической спирали и действующим сверху вниз и на уровне слов, и на уровне букв.
Подобным образом мог быть сформирован и живой организм. Правила, которым подчиняются все его согласованно функционирующие органы, ткани и клетки, могли быть «сформулированы» только на самых высоких, не доступных нашему разуму уровнях информационно-энтропической спирали.
Приведенная в таблице 2. 1 (Приложение 2) «фраза», полученная в результате случайного комбинирования 8-и буквенных сочетаний, имеет формальные признаки осмысленных фраз. В ней можно различить глагольные формы (враться), наречия (непо и корко), форму прилагательного (весел) и даже уловить некий оттенок смысла (какого-то бодрого действия, движения).
В свое время академик Щерба тоже приводил пример форматизированной фразы, из которой можно было бы понять, что некая Глокая куздра штекобуданула (читай: «оттолкнула») некого «бокра » и кудрячит (читай: «приласкивает ») бокренка.
Означают ли две рассмотренные «фразы», что при движении снизу вверх по рассматриваемой нами спирали, можно путем случайных комбинаций букв и слогов получить осмысленный текст? Такой вывод был бы ошибочным. Формальное сходство с грамматическими конструкциями порождает всего лишь иллюзию смысла, потому что не смысл рождается из грамматики, а грамматика строится таким образом, чтобы с ее помощью можно было передать (т. е. закодировать) содержащийся в той или иной фразе смысл.
Таким образом, эти примеры еще раз убеждают нас в том, что план построения сложной информационной системы может формироваться только на верхних иерархических уровнях и оттуда спускаться на нижележащие уровни, задавая на них тот или иной порядок чередования элементов.
Сказанное выше имеет самое непосредственное отношение к проблеме возникновения и функционирования биологических систем.
Выше было отмечено, что проводимый на самом нижнем структурном уровне текста (на уровне отдельных букв) статистический анализ распределения вероятностей букв и последующий расчет количества информации и величины энтропии способны регулировать лишь результирующую упорядоченность текста. Причины этой упорядоченности формируются на недоступных информационно-энтропийному анализу верхних иерархических уровнях текста и языка.
Пытаясь преодолеть указанные ограничения возможностей информационно — энтропийного анализа, К. Шеннон исследовал вероятности появления в тексте различных 4-х, 6-ти и 8-ми буквенных сочетаний. Подставляя найденные значения вероятностей в вероятную функцию энтропии, К. Шеннон определил таким образом величину энтропии с учетом взаимной зависимости (корреляции) букв в пределах слогов, а затем экстраполировал полученный результат на более длительные текстовые отрезки, показав, что корреляция не выходит за пределы отрезков текста в 40—60 букв.
Аналогичные результаты исследований русских текстов представлены в работе Добрушина и в Приложении 2 (табл. 2. 1).
Используемый теорией информации полуэмпирический метод учета межбуквенных корреляций обладает рядом существенных ограничений, которые становятся очевидными, если сопоставить результаты анализа искусственных текстов Шеннона со свойствами реального языка. Дело в том, что при искусственном расчленении текста на отрезки из 4-8 букв стираются границы, разделяющие уровни слогов от уровней слов. В реальных текстах в зависимости от смыслового контекста и одна, и две, и три буквы могут быть в одних случаях самостоятельным словом, а в других — входить в состав других слов.
Очевидно, что в двух указанных случаях рассматриваемые сочетания букв относятся к различным иерархическим уровням текста (или к уровню слогов), однако подобное разграничение уровней может осуществляться только по смыслу, который заключает в себе анализируемый текст. А поскольку используемые теорией информации методы игнорируют смысловое содержание текста, исследуемые ею искусственные тексты отличаются от реальных текстов отсутствием четкой иерархической структуры.
Причины возникновения исследуемого порядка всегда остаются за пределами компетенции статистических методов. Находясь как бы на нижних ступенях некой упорядоченной иерархической структуры, вооруженная статистическими методами наука исследует не само действие порождающих исследуемый порядок причин, а лишь его результат. Любая попытка с помощью информационно-энтропийного анализа делать какие бы то ни было выводы о содержательной стороне письменных текстов была бы равносильна суждению о достоинствах и недостатках какого-то музыкального произведения на основании того, как часто создававший его композитор прибегал к помощи ноты ДО или СОЛЬ. Подобным способом можно идентифицировать принадлежность тому или иному автору его сочинений, но бесполезно пытаться по результатам такого анализа доискиваться до причин, побудивших этого автора сочинить именно эту симфонию, поэму или роман.
Из всего вышесказанного следует, что адекватное представление об иерархической структуре реальных текстов не может быть получено на основании конструирования искусственных текстов, осуществляемого теорией информации по принципу «снизу вверх».
Присущий реальным текстам порядок чередования букв формируется согласно правилам, заданным верхними иерархическими уровнями текста, то есть не «снизу вверх», а «сверху вниз». Что же касается используемой теорией информации вероятностной функции энтропии, то она может быть использована в качестве точного математического инструмента только на нижних уровнях иерархии текста, поскольку только на этих уровнях удается найти достоверные значения вероятностей появления исходных элементов этого уровня (т. е. букв). С переходом на следующий уровень мы обнаруживаем такое обилие исходных элементов этого уровня (т. е. такое количество слов), что определение вероятности появления в тексте всех слов, составляющих лексикон, становится практически неразрешимой задачей.
Так, например, лексикон искусственного текста, каждое слово которого состоит из 6-ти букв, а алфавит — из 30-ти букв, составит 306 = 729 106 «слов». Среди этих слов будут попадаться бессмысленные и даже непроизносимые сочетания из 6-ти гласных или 6-ти согласных букв.
Приняв, что значащие слова составят 0,01% от всех шестибуквенных комбинаций, получим 72900 слов. Из сочетаний этих слов можно составить практически неограниченное количество текстов, поэтому бессмысленно пытаться определять вероятности появления отдельных слов.
Это значит, что вероятностная функция энтропии не может быть использована для строгого определения количества информации и энтропии текстов на уровне слов, и поэтому Шеннон был вынужден использовать приближенные методы экстраполяции результатов, полученных на уровне слогов и отдельных букв.
Четкое понимание присущих информационно-энтропийному анализу ограничений не исключает возможности использования полученной нами на примере искусственных текстов расширяющейся информационно-энтропийной спирали (Приложение 3, фиг.
1 2 3 4 5 6 7 8 9 10