А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  A-Z

 

Как только достигается равное распределение энергии, изменение прекращается.
Если бы, наблюдая за двумя сообщающимися сосудами с равными уровнями воды, не испытывающими никакого воздействия извне, мы увидели, что вода потекла в том или ином направлении так, что уровень воды в одном сосуде поднялся, а уровень воды в другом сосуде понизился, мы были бы свидетелями чуда.
Движущаяся вода может совершать работу. Она способна вращать турбину, которая будет вырабатывать электрический ток, или может просто передвигать предметы. При замедлении потока воды скорость, с которой может производиться работа, будет снижаться вместе с ним. Когда поток воды прекратится, никакой работы производиться не может.
Когда уровень воды одинаков в обоих сосудах, тогда все останавливается. Вся вода по-прежнему там. Вся энергия по-прежнему там. Все это – вода и энергия, тем не менее, уже больше не распределено неравномерно. Именно неравномерное распределение энергии создает изменение, движение, совершает работу – оно стремится к распределению равномерному. Как только равномерное распределение достигнуто, уже нет изменения, нет движения, нет работы.
Спонтанное изменение всегда происходит от неравномерного распределения к равномерному, и, как только достигается равномерное распределение, ничто спонтанное не приведет обратно к неравномерному распределению(Мы увидим, что в действительности это не совсем верно).
Возьмем другой пример, построенный не на уровнях воды, а на тепле. Из двух тел одно может содержать более высокую интенсивность тепловой энергии, чем другое. Уровень интенсивности тепловой энергии определяется как «температура». Чем выше уровень интенсивности тепловой энергии тела, тем выше его температура и тем оно горячее. Поэтому мы можем говорить о горячем теле и о холодном теле и считать их эквивалентными нашему случаю с полным сосудом и сосудом почти пустым.
Предположим, что два тела образовали замкнутую систему так, что в них не может попадать тепло из внешней Вселенной, и, соответственно, тепло не может вытекать из них во внешнюю Вселенную. Теперь представим себе, что два этих тела – горячее и холодное – приведены в соприкосновение.
Из опыта нашей реальной жизни нам точно известно, что произойдет: тепло потечет из горячего тела в холодное – в точности так, как вода текла из полного сосуда в почти пустой. Пока поток тепла продолжается, горячее тело будет остывать, а холодное тело будет нагреваться, точно так же, как полный сосуд становился менее полным, а почти пустой сосуд становился более полным. Наконец, оба тела будут иметь одинаковую температуру, так же как в двух сосудах устанавливался одинаковый уровень воды.
Опять же, скорость потока тепла от горячего тела к холодному зависит от разности распределения энергии. Чем больше разность температур между двумя телами, тем быстрее течет тепло от горячего тела к холодному. По мере охлаждения горячего тела и нагревания холодного разность температур уменьшается, снижается и скорость потока тепла. Наконец, когда температура обоих тел станет одинаковой, поток тепла прекратится – оно не будет двигаться ни в каком направлении.
Опять же, направление потока тепла спонтанно. Если два тела с различной температурой привести в соприкосновение, и тепло не потечет или потечет от холодного тела к горячему так, что холодное тело станет еще более холодным, а горячее еще более горячим, и если бы мы бы ни уверены, что имеем дело с действительно замкнутой системой, и что тут нет никаких фокусов, нам бы пришлось заключить, что мы стали свидетелями чуда. (Разумеется, никаких таких чудес не установлено и не зарегистрировано учеными.) Как только оба тела достигнут одинаковой температуры, поток тепла, который вызывает либо нагрев одного из тел, либо охлаждение, прекращается.
Подобные изменения опять-таки связаны с течением времени. Если бы мы сняли фильм о двух телах, сфокусировавшись на термометрах, прикрепленных к каждому телу, и заметили бы при просмотре, что температура одного тела остается высокой, а другого – низкой, мы бы сделали вывод, что пленка не двигается. Если бы мы увидели, что столбик ртути в термометре на теле с более высокой температурой поднимается еще выше, в то время как столбик на другом термометре опускается еще ниже, мы бы сделали вывод, что пленка прокручивается задом наперед.
Пользуясь горячим и холодным телами, мы могли бы совершить работу. Тепло от горячего тела способно испарять жидкость, а расширяющийся пар способен толкать поршень. Пар мог бы затем передать свое тепло холодному телу, снова стать жидкостью, и процесс мог бы продолжаться снова и снова.
Когда совершается работа и течет тепло, горячее тело передает свое тепло испаряющейся жидкости, а пар, когда он конденсируется, передает свое тепло холодному телу. Поэтому горячее тело становится холоднее, а холодное теплее. Когда температуры сближаются, скорость потока тепла снижается, уменьшается и количество совершаемой работы. Когда же оба тела достигают одинаковой температуры, прекращается и поток тепла и не совершается никакой работы. Тела остаются на месте, вся тепловая энергия все еще там, но уже нет неравного распределения энергии, и поэтому нет никакого изменения, никакого движения, никакой работы.
И опять спонтанное изменение направлено от неравного распределения энергии к равному; от способности к изменению, движению, работе к отсутствию такой способности. И опять, как только такая способность исчезает, она не возникает вновь.
Второе начало термодинамики
Исследования энергии обычно включают в себя изучение потоков тепла и температурных изменений, потому что это – самый простой аспект предмета, поддающийся для наблюдения в лаборатории, а также потому, что это было особенно важно, когда паровые машины были главным способом превращения энергии в работу. По этой причине наука об энергоизменении, энерготечении и преобразовании энергии в работу была обозначена словом «термодинамика», что по-гречески означает «теплодвижение».
Закон преобразования энергии иногда называют «первым началом термодинамики», потому что он является основным правилом, определяющим, что произойдет с энергией.
Что же касается правила о направлении спонтанных изменений от неравномерного распределения энергии к равномерному распределению, то оно получило название «второго начала термодинамики».
Французский физик Николас Л. С. Карно (1796–1832), который первым детально исследовал тепловые потоки в паровых двигателях, еще в 1824 году, по сути дела, сформулировал второе начало термодинамики.
Тем не менее, первооткрывателем второго начала термодинамики считается немецкий физик Рудольф Ю. Э. Клаузиус (1822–1888), который в 1850 году высказал мысль, что этот процесс выравнивания приложим ко всем видам энергии и ко всем явлениям во Вселенной.
Клаузиус доказал, что величина отношения общего количества тепла к температуре в любом определенном теле имеет существенное значение для процесса выравнивания. Он назвал эту величину «энтропией». Чем меньше энтропия, тем более неравномерно распределение энергии. Чем энтропия больше, тем более равномерно распределение энергии. Поскольку спонтанная тенденция, по-видимому, постоянно направлена к изменению от неравномерного распределения энергии к ее равномерному распределению, мы можем сказать, что спонтанная тенденция, по-видимому, направлена к движению от низкой энтропии к высокой энтропии.
Мы можем изложить это таким образом. Первое начало термодинамики утверждает: содержание энергии во Вселенной постоянно.
Второе начало термодинамики утверждает: энтропия Вселенной неуклонно возрастает.
Если первое начало термодинамики, по-видимому, подразумевает, что Вселенная бессмертна, то второе начало показывает, что это бессмертие в определенном смысле ничего не стоит. Энергия всегда будет присутствовать, но она не всегда сможет привнести изменение, движение и работу.
Когда-нибудь энтропия Вселенной достигнет максимума, и вся энергия выравняется. Затем, хотя вся энергия будет присутствовать, дальнейшие изменения станут невозможны – ни движения, ни работы, ни жизни, ни интеллекта. Вселенная будет существовать, но только как замерзшее изваяние Вселенной. «Фильм» перестанет крутиться, перед нами всегда будет стоять один «кадр».
Поскольку тепло – наименее организованный вид энергии и такой, который легче всего поддается равному распределению, всякое превращение любого вида нетепловой энергии в тепло означает увеличение энтропии. Спонтанное изменение всегда ведет от электричества к теплу, от химической энергии к теплу, от лучистой энергии к теплу и так далее.
Поэтому при максимальной энтропии все виды энергии, которые можно преобразовать в тепло, будут преобразованы, и все части Вселенной будут иметь одинаковую температуру. Это иногда называют «тепловой смертью Вселенной», и, исходя из изложенного выше, может показаться, что это означает неизбежный конец.
Таким образом, конец мифической и конец научной Вселенной существенно различны. Мифическая Вселенная заканчивается всеобщим пожаром и развалом: она заканчивается одним махом. Научная Вселенная, если она заканчивается тепловой смертью, заканчивается длительной агонией.
Конец мифической Вселенной всегда предполагается в близком будущем. Конец научной Вселенной в случае тепловой смерти, конечно, далек. Он по крайней мере в тысяче миллиардов лет от нас, может быть, даже во многих тысячах миллиардов лет. Учитывая, что сейчас Вселенной, согласно существующим расчетам, только пятнадцать миллиардов лет, мы всего лишь во младенчестве ее жизни.
Тем не менее, хотя конец мифической Вселенной обычно описывают как насильственный и близкий, он принят, потому что несет обещание возрождения. Конец научной Вселенной, хотя он и мирный и чрезвычайно далекий, по-видимому, не подразумевает возрождения, а будет окончательным, и ясно, что такую вещь трудно принять. Люди ищут выход из положения.
В конце концов, спонтанные процессы могут быть обратимы. Воду можно накачать наверх против ее тенденции стекать. Тела можно охладить ниже комнатной температуры и оставить их в холодильнике; или нагреть выше комнатной температуры и оставить их в печке. При таком взгляде на вещи может показаться, что неминуемый рост энтропии можно предотвратить.
Иногда процесс возрастания энтропии объясняют, представляя Вселенную в виде огромных, неописуемо сложных часов, которые постепенно замедляют ход. К примеру, у человека есть часы, которые постепенно замедляют ход, но их всегда можно завести. А не может ли существовать подобный процесс и для Вселенной?
Разумеется, это не значит, что мы должны предположить, будто бы уменьшение энтропии может происходить только благодаря обдуманным действиям людей. По-видимому, жизнь сама по себе, совершенно независимо от человеческого интеллекта, бросает вызов второму началу термодинамики. Индивидуумы умирают, но рождаются новые индивидуумы, и молодость, как всегда, торжествует. Растительность умирает зимой, но весной она снова оживает. Жизнь существует на Земле более трех миллиардов лет, а возможно, и больше, и не проявляет никаких признаков замедления. Более того, она проявляет множество признаков «подзаводки», поскольку на протяжении всей истории жизни на Земле она, жизнь, становилась все более сложной как в отношении отдельных организмов, так и в отношении экологической паутины, которая полностью ее опутала. История биологической эволюции демонстрирует огромное уменьшение энтропии.
Исходя из этого, кое-кто и в самом деле пытается характеризовать жизнь как средство уменьшения энтропии. Окажись это правдой, и Вселенная не двигалась бы больше к тепловой смерти, так как, где бы жизнь ни проявляла свое воздействие, она бы автоматически вела к уменьшению энтропии. Казалось бы, это очевидно, однако это совсем не так. Жизнь – не средство уменьшения энтропии, и сама по себе она не может предотвратить тепловую смерть. Подобная мысль – следствие неправильного понимания, стремления выдать желаемое за действительное.
Законы термодинамики применимы к замкнутым системам. Если для снижения энтропии используется насос, который накачивает воду наверх, насос надо рассматривать как часть системы. Если для снижения энтропии используется холодильник, который охлаждает объект ниже комнатной температуры, холодильник надо рассматривать как часть системы. Нельзя считать, что насос или холодильник существуют сами по себе. К чему бы они ни были подключены, каким бы ни был источник их энергии, они должны рассматриваться как часть системы.
В любой момент, когда люди или орудия людей своими действиями уменьшают энтропию и поворачивают вспять спонтанное явление, оказывается, что люди и орудия, занятые в процессе, подвержены увеличению энтропии.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
Поиск книг  2500 книг фантастики  4500 книг фэнтези  500 рассказов